Chemistry and Biochemistry Faculty
Permanent URI for this communityhttps://hdl.handle.net/10294/9060
Browse
Browsing Chemistry and Biochemistry Faculty by Author "Al Homsi, Raymond"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albican(Public Library of Science, 2022-11-16) Shahina, Zinnat; Al Homsi, Raymond; Price, Jared D. W.; Whiteway, Malcolm; Sultana, Taranum; Dahms, Tanya E. S.The essential oil from Rosmarinus officinalis L., a composite mixture of plant-derived secondary metabolites, exhibits antifungal activity against virulent candidal species. Here we report the impact of rosemary oil and two of its components, the monoterpene α-pinene and the monoterpenoid 1,8-cineole, against Candida albicans, which induce ROS-dependent cell death at high concentrations and inhibit hyphal morphogenesis and biofilm formation at lower concentrations. The minimum inhibitory concentrations (100% inhibition) for both rosemary oil and 1,8-cineole were 4500 μg/ml and 3125 μg/ml for α-pinene, with the two components exhibiting partial synergy (FICI = 0.55 ± 0.07). At MIC and 1/2 MIC, rosemary oil and its components induced a generalized cell wall stress response, causing damage to cellular and organelle membranes, along with elevated chitin production and increased cell surface adhesion and elasticity, leading to complete vacuolar segregation, mitochondrial depolarization, elevated reactive oxygen species, microtubule dysfunction, and cell cycle arrest mainly at the G1/S phase, consequently triggering cell death. Interestingly, the same oils at lower fractional MIC (1/8-1/4) inhibited virulence traits, including reduction of mycelium (up to 2-fold) and biofilm (up to 4-fold) formation, through a ROS-independent mechanism.