Department of Biology
Permanent URI for this communityhttps://hdl.handle.net/10294/5333
Browse
Browsing Department of Biology by Author "Baulch, Helen M."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Impacts of hydrologic management on the eutrophication of shallow lakes in an intensive agricultural landscape (Saskatchewan, Canada)(Wiley, 2024-05-01) Gushulak, Cale A. C.; Chegoonian, Amir M.; Wolfe, Jared; Gray, Kristen; Stefano, Mezzini; Wissel, Bjoern; Hann, Brenda; Baulch, Helen M.; Finlay, Kerri; Leavitt, Peter R.1. Hydrologic management of shallow lakes is often undertaken to prevent fluctua- tions in lake level, and to ensure sufficient water volume for economic, domestic, and recreational uses, but there is inconsistent evidence of whether lake-level sta- bilisation through hydrological management promotes or hinders eutrophication. 2. Here we used multi-proxy paleolimnological assessments of water quality (sedi- mentary carbon, nitrogen, total phosphorus, fossil pigments), and zooplankton community ecology (fossil Cladocera assemblages), combined with Landsat- derived estimates of lake surface area in two shallow eutrophic lakes, in the Prairies of southern Saskatchewan, Canada, to quantify how 8 decades of con- trasting hydrological management strategies (continuous or intermittent) affect primary production and phytoplankton composition. 3. Analysis revealed that irregular hydrological management of Pelican Lake led to sharp increases in primary production concomitant with lake-level decline. In contrast, continuously managed Buffalo Pound Lake, a drinking water reservoir for regional cities, exhibited slow, persistent eutrophication over decades despite active regulation of water levels. In both lakes, strong correlations of δ 15N val- ues with pigments from diazotrophic cyanobacteria (canthaxanthin) showed that N2-fixation increased during eutrophication irrespective of the timing of change. Finally, variation in fossil cladoceran density and composition reflected changes in pelagic and littoral habitats (e.g., reduced macrophyte cover) due to changes in both lake level and water quality. 4. Basin comparison shows that while hydrologic management can moderate water quality degradation due to lake-level change, it does not prevent eutrophication when nutrient influx remains high. 5. Given that regional water availability is forecast to decline in coming decades, we anticipate that continued hydrological management will be unavoidable and will be unable to improve water quality unless nutrient influx is also controlled.Item Open Access Improvement of field fluorometry estimates of chlorophyll a concentration in a cyanobacteria-rich eutrophic lake(Wiley, 2022-02-03) Chegoonian, Amir M.; Zolfaghari, Kiana; Leavitt, Peter R; Baulch, Helen M.; Duguay, Claude R.Instrumented buoys are used to monitor water quality, yet there remains a need to evaluate whether in vivo fluorometric measures of chlorophyll a (Chl a) produce accurate estimates of phytoplankton abundance. Here, 6 years (2014–2019) of in vitro measurements of Chl a by spectrophotometry were compared with coeval estimates from buoy-based fluorescence measurements in eutrophic Buffalo Pound Lake, Saskatchewan, Canada. Analysis revealed that fluorometric and in vitro estimates of Chl a differed both in terms of absolute concentration and patterns of relative change through time. Three models were developed to improve agreement between metrics of Chl a concentration, including two based on Chl a and phycocyanin (PC) fluorescence and one based on multiple linear regressions with measured environmental conditions. All models were examined in terms of two performance metrics; accuracy (lowest error) and reliability (% fit within confidence intervals). The model based on PC fluorescence was most accurate (error = 35%), whereas that using environmental factors was most reliable (89% within 3σ of mean). Models were also evaluated on their ability to produce spatial maps of Chl a using remotely sensed imagery. Here, newly developed models significantly improved system performance with a 30% decrease in Chl a errors and a twofold increase in the range of reconstructed Chl a values. Superiority of the PC model likely reflected high cyanobacterial abundance, as well as the excitation–emission wavelength configuration of fluorometers. Our findings suggest that a PC fluorometer, used alone or in combination with environmental measurements, performs better than a single-excitation-band Chl a fluorometer in estimating Chl a content in highly eutrophic waters.Item Open Access Regulation of carbon dioxide and methane in small agricultural reservoirs: optimizing potential for greenhouse gas uptake(Copernicus Publications, 2019-11-08) Webb, Jackie R.; Leavitt, Peter R.; Simpson, Gavin L.; Baulch, Helen M.; Haig, Heather A.; Hodder, Kyle R.; Finlay, KerriSmall farm reservoirs are abundant in many agricultural regions across the globe and have the potential to be large contributing sources of carbon dioxide (CO2) and methane (CH4) to agricultural landscapes. Compared to natural ponds, these artificial waterbodies remain overlooked in both agricultural greenhouse gas (GHG) inventories and inland water global carbon (C) budgets. Improved understanding of the environmental controls of C emissions from farm reservoirs is required to address and manage their potential importance in agricultural GHG budgets. Here, we conducted a regional-scale survey (∼ 235 000 km2) to measure CO2 and CH4 surface concentrations and diffusive fluxes across 101 small farm reservoirs in Canada's largest agricultural area. A combination of abiotic, biotic, hydromorphologic, and landscape variables were modelled using generalized additive models (GAMs) to identify regulatory mechanisms. We found that CO2 concentration was estimated by a combination of internal metabolism and groundwater-derived alkalinity (66.5 % deviance explained), while multiple lines of evidence support a positive association between eutrophication and CH4 production (74.1 % deviance explained). Fluxes ranged from −21 to 466 and 0.14 to 92 mmol m−2 d−1 for CO2 and CH4, respectively, with CH4 contributing an average of 74 % of CO2-equivalent (CO2-e) emissions based on a 100-year radiative forcing. Approximately 8 % of farm reservoirs were found to be net CO2-e sinks. From our models, we show that the GHG impact of farm reservoirs can be greatly minimized with overall improvements in water quality and consideration to position and hydrology within the landscape.Item Open Access Seasonal variability of CO 2, CH 4 , and N2 O content and fluxes in small agricultural reservoirs of the northern Great Plains.(Frontiers Media, 2022-10-03) Jensen, Sydney A.; Webb, Jackie R.; Simpson, Gavin L.; Baulch, Helen M.; Leavitt, Peter R.Inland waters are important global sources, and occasional sinks, of CO 2 , CH 4, and N 2 O to the atmosphere, but relatively little is known about the contribution of GHGs of constructed waterbodies, particularly small sites in agricultural regions that receive large amounts of nutrients (carbon, nitrogen, phosphorus). Here, we quantify the magnitude and controls of diffusive CO 2 , CH4 , and N 2 O fluxes from 20 agricultural reservoirs on seasonal and diel timescales. All gases exhibited consistent seasonal trends, with CO 2 concentrations highest in spring and fall and lowest in mid-summer, CH 4 highest in mid-summer, and N 2 O elevated in spring following ice-off. No discernible diel trends were observed for GHG content. Analyses of GHG covariance with potential regulatory factors were conducted using generalized additive models (GAMs) that revealed CO 2 concentrations were affected primarily by factors related to benthic respiration, including dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), dissolved organic carbon (DOC), stratification strength, and water source (as δ18 O water ). In contrast, variation in CH 4 content was correlated positively with factors that favoured methanogenesis, and so varied inversely with DO, soluble reactive phosphorus (SRP), and conductivity (a proxy for sulfate content), and positively with DIN, DOC, and temperature. Finally, N 2 O concentrations were driven mainly by variation in reservoir mixing (as buoyancy frequency), and were correlated positively with DO, SRP, and DIN levels and negatively with pH and stratification strength. Estimates of mean CO 2 -eq flux during the open-water period ranged from 5,520 mmol m−2 year 1 (using GAM- predictions) to 10,445 mmol m−2 year−1 (using interpolations of seasonal data) reflecting how extreme values were extrapolated, with true annual flux rates likely falling between these two estimates.Item Open Access Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink(National Academy of Sciences, 2019-05-14) Webb, Jackie R.; Hayes, Nicole M.; Simpson, Gavin L.; Leavitt, Peter R.; Baulch, Helen M.; Finlay, KerriNitrogen pollution and global eutrophication are predicted to increase nitrous oxide (N2O) emissions from freshwater ecosystems. Surface waters within agricultural landscapes experience the full impact of these pressures and can contribute substantially to total landscape N2O emissions. However, N2O measurements to date have focused on flowing waters. Small artificial waterbodies remain greatly understudied in the context of agricultural N2O emissions. This study provides a regional analysis of N2O measurements in small (<0.01 km2) artificial reservoirs, of which an estimated 16 million exist globally. We show that 67% of reservoirs were N2O sinks (−12 to −2 μmol N2O⋅m−2⋅d−1) in Canada’s largest agricultural area, despite their highly eutrophic status [99 ± 289 µg⋅L−1 chlorophyll-a (Chl-a)]. Generalized additive models indicated that in situ N2O concentrations were strongly and nonlinearly related to stratification strength and dissolved inorganic nitrogen content, with the lowest N2O levels under conditions of strong water column stability and high algal biomass. Predicted fluxes from previously published models based on lakes, reservoirs, and agricultural waters overestimated measured fluxes on average by 7- to 33-fold, challenging the widely held view that eutrophic N-enriched waters are sources of N2O.