Browsing by Author "Chegoonian, Amir M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Impacts of hydrologic management on the eutrophication of shallow lakes in an intensive agricultural landscape (Saskatchewan, Canada)(Wiley, 2024-05-01) Gushulak, Cale A. C.; Chegoonian, Amir M.; Wolfe, Jared; Gray, Kristen; Stefano, Mezzini; Wissel, Bjoern; Hann, Brenda; Baulch, Helen M.; Finlay, Kerri; Leavitt, Peter R.1. Hydrologic management of shallow lakes is often undertaken to prevent fluctua- tions in lake level, and to ensure sufficient water volume for economic, domestic, and recreational uses, but there is inconsistent evidence of whether lake-level sta- bilisation through hydrological management promotes or hinders eutrophication. 2. Here we used multi-proxy paleolimnological assessments of water quality (sedi- mentary carbon, nitrogen, total phosphorus, fossil pigments), and zooplankton community ecology (fossil Cladocera assemblages), combined with Landsat- derived estimates of lake surface area in two shallow eutrophic lakes, in the Prairies of southern Saskatchewan, Canada, to quantify how 8 decades of con- trasting hydrological management strategies (continuous or intermittent) affect primary production and phytoplankton composition. 3. Analysis revealed that irregular hydrological management of Pelican Lake led to sharp increases in primary production concomitant with lake-level decline. In contrast, continuously managed Buffalo Pound Lake, a drinking water reservoir for regional cities, exhibited slow, persistent eutrophication over decades despite active regulation of water levels. In both lakes, strong correlations of δ 15N val- ues with pigments from diazotrophic cyanobacteria (canthaxanthin) showed that N2-fixation increased during eutrophication irrespective of the timing of change. Finally, variation in fossil cladoceran density and composition reflected changes in pelagic and littoral habitats (e.g., reduced macrophyte cover) due to changes in both lake level and water quality. 4. Basin comparison shows that while hydrologic management can moderate water quality degradation due to lake-level change, it does not prevent eutrophication when nutrient influx remains high. 5. Given that regional water availability is forecast to decline in coming decades, we anticipate that continued hydrological management will be unavoidable and will be unable to improve water quality unless nutrient influx is also controlled.Item Open Access Improvement of field fluorometry estimates of chlorophyll a concentration in a cyanobacteria-rich eutrophic lake(Wiley, 2022-02-03) Chegoonian, Amir M.; Zolfaghari, Kiana; Leavitt, Peter R; Baulch, Helen M.; Duguay, Claude R.Instrumented buoys are used to monitor water quality, yet there remains a need to evaluate whether in vivo fluorometric measures of chlorophyll a (Chl a) produce accurate estimates of phytoplankton abundance. Here, 6 years (2014–2019) of in vitro measurements of Chl a by spectrophotometry were compared with coeval estimates from buoy-based fluorescence measurements in eutrophic Buffalo Pound Lake, Saskatchewan, Canada. Analysis revealed that fluorometric and in vitro estimates of Chl a differed both in terms of absolute concentration and patterns of relative change through time. Three models were developed to improve agreement between metrics of Chl a concentration, including two based on Chl a and phycocyanin (PC) fluorescence and one based on multiple linear regressions with measured environmental conditions. All models were examined in terms of two performance metrics; accuracy (lowest error) and reliability (% fit within confidence intervals). The model based on PC fluorescence was most accurate (error = 35%), whereas that using environmental factors was most reliable (89% within 3σ of mean). Models were also evaluated on their ability to produce spatial maps of Chl a using remotely sensed imagery. Here, newly developed models significantly improved system performance with a 30% decrease in Chl a errors and a twofold increase in the range of reconstructed Chl a values. Superiority of the PC model likely reflected high cyanobacterial abundance, as well as the excitation–emission wavelength configuration of fluorometers. Our findings suggest that a PC fluorometer, used alone or in combination with environmental measurements, performs better than a single-excitation-band Chl a fluorometer in estimating Chl a content in highly eutrophic waters.