Browsing by Author "Engstrom, Daniel R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Changes in coupled carbon‒nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming(Nature Research, 2020-10-28) Anderson, N. John; Engstrom, Daniel R.; Leavitt, Peter R.; Flood, Sarah M.; Heathcote, Adam J.Arctic ecosystems are changing in response to recent rapid warming, but the synergistic effects of other environmental drivers, such as moisture and atmospheric nitrogen (N) deposition, are difficult to discern due to limited monitoring records. Here we use geo- chemical analyses of 210 Pb-dated lake-sediment cores from the North Slope of Alaska to show that changes in landscape nutrient dynamics started over 130 years ago. Lake carbon burial doubled between 1880 and the late-1990s, while current rates (~10 g C m−2 yr−1) represent about half the CO2 emission rate for tundra lakes. Lake C burial reflects increased aquatic production, stimulated initially by nutrients from terrestrial ecosystems due to late- 19 th century moisture-driven changes in soil microbial processes and, more recently, by atmospheric reactive N deposition. These results highlight the integrated response of Arctic carbon cycling to global environmental stressors and the degree to which C–N linkages were altered prior to post-1950 regional warming.Item Open Access Impacts of a century of land-use change on the eutrophication of large, shallow, prairie Lake Manitoba in relation to adjacent Lake Winnipeg (Manitoba, Canada)(John Wiley & Sons Ltd., 2023-11-08) Gushulak, Cale A. C.; Mezzini, Stefano; Moir, Katherine E. M; Simpson, Gavin L.; Bunting, Lynda; Wissel, Björn; Engstrom, Daniel R.; Laird, Kathleen R.; Amand, Ann St.; Cumming, Brian F.; Leavitt, Peter R.1. Evaluation of large lake response to centennial changes in land use and climate can be complicated by high spatial and hydrological complexity within their catchments, particularly in regions of low relief. Furthermore, large lakes can exhibit abrupt changes in structure and function that obscure causes of eutrophication. 2. We provide the first quantification of historical trends in lake production, cyanobacterial abundance, sediment geochemistry and diatom composition since c. 1800 in Lake Manitoba, the 29th largest lake in the world, and compared them to Lake Winnipeg, a morphologically similar, adjacent basin with a 10-fold larger catchment and an abrupt increase in production around 1990. 3. Before 1900, Lake Manitoba was mesotrophic, with low sedimentary concentrations of carbon, phosphorus, nitrogen, cyanobacteria and algal pigments, as well as assemblages of low-light-adapted benthic diatoms. Analysis of pigment time-series with hierarchical generalised additive models revealed that Lake Manitoba eutrophied during 1900–1930 as a consequence of the development of intensive agriculture within its local catchment, but thereafter exhibited stable cyanobacterial densities with limited expansion of N2-fixing cyanobacteria despite persistent eutrophication. 4. Lake Manitoba did not undergo an abrupt change as seen in Lake Winnipeg. 5. These findings suggest that catchment size had little influence on water quality degradation and that nutrient influx from proximal agricultural sources was sufficient to initially degrade these large prairie lakes. The abrupt change in Lake Winnipeg around 1990 required additional intensification of local land use that did not occur in the Lake Manitoba catchment.