Browsing by Author "Gushulak, Cale A. C."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Effects of spatial variation in benthic phototrophs along a depth gradient on assessments of whole-lake processes(Wiley, 2021-09-16) Gushulak, Cale A. C.; Haig, Heather A.; Kingsbury, Melanie V.; Wissel, Bjoern; Cumming, Brian F.; Leavitt, Peter R.1. Phytobenthos are often underrepresented in both limnological and paleolimnological studies but may play key roles in whole-lake production and ecosystem processes including eutrophication, food-web dynamics, and ecosystem state changes. 2. Photosynthetic pigments, stables isotopes, and diatoms were quantified from surface sediments (0-1 cm) collected across a depth transect of a small, DOC-rich, mesotrophic lake in boreal northwestern Ontario to assess spatial variation in phytobenthos abundance and production. 3. Maximal concentrations of siliceous algae and cyanobacteria pigments occurred at ~2–6 m depth, with abundant tychoplanktonic diatoms, depleted sedimentary δ13C C values, and elevated 33 ratios of precursor chlorophyll a to product pheophytin a, all aligning well with the depths of the thermocline, epilimnetic mixing, and maximum light penetration. 4. These patterns demonstrated the presence of three discrete community assemblages, with greatest mass accumulation occurring at intermediate depths where warm illuminated sediments provide habitat for tychoplanktonic diatoms and cyanobacteria between turbulent shallows and cold and dark depths. 5. If widespread among boreal lakes, this tychoplanktonic zone may exert important effects on whole-lake production, carbon sequestration, benthic-pelagic food-web coupling, eutrophication, and ecosystem state change.Item Open Access Impacts of a century of land-use change on the eutrophication of large, shallow, prairie Lake Manitoba in relation to adjacent Lake Winnipeg (Manitoba, Canada)(John Wiley & Sons Ltd., 2023-11-08) Gushulak, Cale A. C.; Mezzini, Stefano; Moir, Katherine E. M; Simpson, Gavin L.; Bunting, Lynda; Wissel, Björn; Engstrom, Daniel R.; Laird, Kathleen R.; Amand, Ann St.; Cumming, Brian F.; Leavitt, Peter R.1. Evaluation of large lake response to centennial changes in land use and climate can be complicated by high spatial and hydrological complexity within their catchments, particularly in regions of low relief. Furthermore, large lakes can exhibit abrupt changes in structure and function that obscure causes of eutrophication. 2. We provide the first quantification of historical trends in lake production, cyanobacterial abundance, sediment geochemistry and diatom composition since c. 1800 in Lake Manitoba, the 29th largest lake in the world, and compared them to Lake Winnipeg, a morphologically similar, adjacent basin with a 10-fold larger catchment and an abrupt increase in production around 1990. 3. Before 1900, Lake Manitoba was mesotrophic, with low sedimentary concentrations of carbon, phosphorus, nitrogen, cyanobacteria and algal pigments, as well as assemblages of low-light-adapted benthic diatoms. Analysis of pigment time-series with hierarchical generalised additive models revealed that Lake Manitoba eutrophied during 1900–1930 as a consequence of the development of intensive agriculture within its local catchment, but thereafter exhibited stable cyanobacterial densities with limited expansion of N2-fixing cyanobacteria despite persistent eutrophication. 4. Lake Manitoba did not undergo an abrupt change as seen in Lake Winnipeg. 5. These findings suggest that catchment size had little influence on water quality degradation and that nutrient influx from proximal agricultural sources was sufficient to initially degrade these large prairie lakes. The abrupt change in Lake Winnipeg around 1990 required additional intensification of local land use that did not occur in the Lake Manitoba catchment.Item Open Access Impacts of hydrologic management on the eutrophication of shallow lakes in an intensive agricultural landscape (Saskatchewan, Canada)(Wiley, 2024-05-01) Gushulak, Cale A. C.; Chegoonian, Amir M.; Wolfe, Jared; Gray, Kristen; Stefano, Mezzini; Wissel, Bjoern; Hann, Brenda; Baulch, Helen M.; Finlay, Kerri; Leavitt, Peter R.1. Hydrologic management of shallow lakes is often undertaken to prevent fluctua- tions in lake level, and to ensure sufficient water volume for economic, domestic, and recreational uses, but there is inconsistent evidence of whether lake-level sta- bilisation through hydrological management promotes or hinders eutrophication. 2. Here we used multi-proxy paleolimnological assessments of water quality (sedi- mentary carbon, nitrogen, total phosphorus, fossil pigments), and zooplankton community ecology (fossil Cladocera assemblages), combined with Landsat- derived estimates of lake surface area in two shallow eutrophic lakes, in the Prairies of southern Saskatchewan, Canada, to quantify how 8 decades of con- trasting hydrological management strategies (continuous or intermittent) affect primary production and phytoplankton composition. 3. Analysis revealed that irregular hydrological management of Pelican Lake led to sharp increases in primary production concomitant with lake-level decline. In contrast, continuously managed Buffalo Pound Lake, a drinking water reservoir for regional cities, exhibited slow, persistent eutrophication over decades despite active regulation of water levels. In both lakes, strong correlations of δ 15N val- ues with pigments from diazotrophic cyanobacteria (canthaxanthin) showed that N2-fixation increased during eutrophication irrespective of the timing of change. Finally, variation in fossil cladoceran density and composition reflected changes in pelagic and littoral habitats (e.g., reduced macrophyte cover) due to changes in both lake level and water quality. 4. Basin comparison shows that while hydrologic management can moderate water quality degradation due to lake-level change, it does not prevent eutrophication when nutrient influx remains high. 5. Given that regional water availability is forecast to decline in coming decades, we anticipate that continued hydrological management will be unavoidable and will be unable to improve water quality unless nutrient influx is also controlled.Item Open Access Influence of cultural eutrophication, climate, and landscape connectivity on 3 Kawartha lakes (Ontario, Canada) since the early 1800s(Wiley, 2023-06-02) Laird, Kathleen R.; Li, Shirui; Gushulak, Cale A. C.; Moir, Katherine E.; Wang, Yuxiang; Cumming, Brian F.Paleolimnological analyses of 3 lakes within the Trent-Severn Waterway (TSW) were analyzed 19 to evaluate the role of regional land-use practices (forestry and agriculture), climate change, and 20 landscape position on cultural eutrophication and lake response over the past ~200 years.