Repository logo
Communities & Collections
All of oURspace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ngopnang Ngompe, Arnaud"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enriched model categories and the Dold-Kan correspondence
    (Faculty of Graduate Studies and Research, University of Regina, 2024-10) Ngopnang Ngompe, Arnaud; Frankland, Martin; Stanley, Donald; Fallat, Shaun; Herman, Allen; Zilles, Sandra; Ponto, Kate
    The work we present in this thesis is an application of the monoidal properties of the Dold–Kan correspondence and is constituted of two main parts. In the first one, we observe that by a theorem of Christensen and Hovey, the category of nonnegatively graded chain complexes of left R-modules has a model structure, called the Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. Hence, the Dold–Kan correspondence induces a model structure on the category of simplicial left R-modules and some properties, notably it is monoidal. In the second part, we observe that changing the enrichment of an enriched, tensored and cotensored category along the Dold–Kan correspondence does not preserve the tensoring nor the cotensoring. Thus, we generalize this observation to any weak monoidal Quillen adjunction and we give an insight of which properties are preserved and which are weakened after changing the enrichment of an enriched model category along a right weak monoidal Quillen adjoint.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie Settings
  • Privacy Policy
  • oURspace Policy
  • oURspace License
  • Send Feedback