Repository logo
Communities & Collections
All of oURspace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nii-Adjei Adjetey, Samuel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Beyond Net-Zero Carbon Emissions in Industrial Process through Catalyst-Aided Amine Solvents for the Indirect Co-Combustion of Natural Gas and Biomass
    (2024-11-06) Nii-Adjei Adjetey, Samuel; Appiah, Foster; Natewong, Paweesuda; Narku-Tetteh, Jessica; Supap, Teeradet; Idem, Raphael
    This poster demonstrate research efforts undertaken to explore innovative approaches to achieving net-zero carbon emissions in industrial processes by integrating catalyst-enhanced amine solvents for the indirect co-combustion of natural gas and biomass. The research focuses on the development and optimization of heterogeneous solid-base catalysts to enhance CO₂ absorption rates, improve solvent loading, and increase overall process efficiency. Various catalysts, including PEI-modified catalysts, K/MgO, K/MgO-CaO, and activated carbon blends, were synthesized and evaluated. Results indicated significant improvements in CO₂ capture rates, with the K/MgO-CaO catalyst demonstrating notable chemical, thermal, and mechanical stability. Furthermore, a life cycle assessment (LCA) based on the ReCiPe methodology highlighted the environmental benefits of this novel catalyst-solvent system compared to conventional MEA-based carbon capture and the novel solvent AMP:PRLD. This work presents a promising pathway for power and energy sectors to enhance sustainability, reduce emissions, and move beyond net-zero targets.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie Settings
  • Privacy Policy
  • oURspace Policy
  • oURspace License
  • Send Feedback