Browsing by Author "Simpson, Gavin L."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access Abrupt changes in the physical and biological structure of endorheic upland lakes due to 8-m lake-level variation during the 20 th century(Wiley, 2022-03-07) Bjorndahl, Judith A.; Gushulak, Cale A.C.; Mezzini, Stefano; Simpson, Gavin L.; Haig, Heather A.; Leavitt, Peter R; Finlay, KerriClimate-induced variation in lake level can affect physicochemical properties of endorheic lakes, but its consequences for phototrophic production and regime shifts are not well understood. Here, we quantified changes in the abundance and community composition of phototrophs in Kenosee and White Bear lakes, two endorheic basins in the parkland Moose Mountain uplands of southeastern Saskatchewan, Canada, which have experienced > 8 m declines in water level since ~ 1900. We hypothesized that lower water levels and warmer temperatures should manifest as increased abundance of phytoplankton, particularly cyanobacteria, and possibly trigger a regime shift to turbid conditions due to evaporative concentration of nutrients and solutes. High-resolution analysis of sedimentary pigments revealed an increase in total phototrophic abundance (as β-carotene) concurrent with lake-level decline beginning ~ 1930, but demonstrated little directional change in cyanobacteria. Instead, significant increases in obligately anaerobic purple sulfur bacteria (as okenone) occurred in both lakes during ~ 1930–1950, coeval with alterations to light environments and declines in lake level. The presence of okenone suggests that climate-induced increases in solute concentrations may have favored the formation of novel bacterial habitats where photic and anoxic zones overlapped. Generalized additive models showed that establishment of this unique habitat was likely preceded by increased temporal variance of sulfur bacteria, but not phytoplankton or cyanobacteria, suggesting that this abrupt change to physical lake structure was unique to deep-water environments. Such climate-induced shifts may become more frequent in the region due to hydrological stress on lake levels due to warming temperatures across the Northern Great Plains.Item Open Access Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years(Wiley, 2018-12-07) Swarbrick, Vanessa J.; Simpson, Gavin L.; Glibert, Patricia M.; Leavitt, Peter R.Previous research suggests that fertilization of surface waters with chemically reduced nitrogen (N), including ammonium (NH4+), may either enhance or suppress phytoplankton growth. To identify the factors influencing the net effect of NH4+, we fertilized natural phytoplankton assemblages from two eutrophic hardwater lakes with growth-saturating concentrations of NH4Cl in 241 incubation experiments conducted biweekly May–August during 1996–2011. Phytoplankton biomass (as chlorophyll a) was significantly (p < 0.05) altered in fertilized trials relative to controls after 72 h in 44.8% of experiments, with a marked rise in both spring suppression and summer stimulation of assemblages over 16 yr, as revealed by generalized additive models (GAMs). Binomial GAMs were used to compare contemporaneous changes in physico-chemical (temperature, Secchi depth, pH, nutrients; 19.5% deviance explained) and biological parameters (phytoplankton community composition; 40.0% deviance explained) to results from fertilization experiments. Models revealed that that the likelihood of growth suppression by NH4+ increased with abundance of diatoms, cryptophytes, and unicellular cyanobacteria, particularly when water temperatures and soluble reactive phosphorus (SRP) concentrations were low. In contrast, phytoplankton was often stimulated by NH4+ when chlorophytes and non-N2-fixing cyanobacteria were abundant, and temperatures and SRP concentrations were high. Progressive intensification of NH4+ effects over 16 yr reflects changes in both spring (cooler water, increased diatoms and cryptophytes) and summer lake conditions (more chlorophytes, earlier cyanobacteria blooms), suggesting that the seasonal effects of NH4+ will vary with future climate change and modes of N enrichment.Item Open Access Effects of experimental nitrogen fertilization on planktonic metabolism and CO2 flux in a hypereutrophic hardwater lake(Public Library of Science, 2017-12-12) Bogard, Matthew J.; Finlay, Kerri; Waiser, Marley J.; Tumber, Vijay P.; Donald, Derek B.; Wiik, Emma; Simpson, Gavin L.; del Giorgio, Paul A.; Leavitt, Peter R.Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N). Although these lakes are landscape hotspots for CO2 exchange and food web carbon (C) cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources) yield consistent effects on auto- and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO2 exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer) at loading rates of 0, 1, 3, 8 or 18 mg N L-1 week-1 to 3240-L, in-situ mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP) two- to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L-1. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC), and increased the rate of CO2 influx, while planktonic heterotrophy and CO2 production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO2. Chemical effects on CO2 through calcite precipitation were also observed, but similarly did not change the direction of net CO2 flux. Taken together, these results demonstrate that atmospheric exchange of CO2 in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO2 in-gassing in P-rich lake ecosystemItem Open Access Effects of lake warming on the seasonal risk of toxic cyanobacteria exposure(Wiley, 2020-06-18) Hayes, Nicole M.; Haig, Heather A.; Simpson, Gavin L.; Leavitt, Peter R.Incidence of elevated harmful algal blooms and concentrations of microcystin are increasing globally as a result of human-mediated changes in land use and climate. However, few studies document changes in the seasonal and interannual concentrations of microcystin in lakes. Here, we modeled 11 yr of biweekly microcystin data from six lakes to characterize the seasonal patterns in microcystin concentration and to ascertain if there were pronounced changes in the patterns of potential human exposure to microcystin in lakes of central North America. Bayesian time series analysis with generalized additive models found evidence for a regional increase in microcystin maxima and duration but recorded high variation among lakes. During the past decade, warmer temperatures, but not nutrient levels, led to a marked increase in the number of days when concentrations exceeded drinking and recreational water thresholds set by the World Health Organization and United States Environmental Protection Agency.Item Open Access Effects of nitrogen removal from wastewater on phytoplankton in eutrophic prairie streams(Wiley, 2021-10-15) Bergbusch, Nathanael T.; Hayes, Nicole M.; Simpson, Gavin L.; Swarbrick, Vanessa J.; Quiñones-Rivera, Zoraida J.; Leavitt, Peter R.1. Biological nutrient removal (BNR) may be an effective strategy to reduce eutrophication; however, concerns remain about effects on receiving waters of removing both nitrogen (N) and phosphorus (P), rather than P alone. 2. Phytoplankton abundance (as µg chlorophyll a/L) and community composition (as nmol biomarker pigment/L) were quantified over 6 years in two connected eutrophic streams to determine how algae and cyanobacteria varied in response to a shift from tertiary (P removal) to BNR (N and P removal) wastewater treatment. 3. Phytoplankton were sampled biweekly at nine stations May to September and were analysed using generalised additive models (GAMs) to quantify landscape patterns of phototrophs and identify potential causal relationships both before (2010–2012) and after (2017–2019) BNR installation in 2016. 4. Analysis with GAMs showed that 69%–79% of deviance in phytoplankton abundance and composition could be explained by date- and site-specific variance in stream flow, temperature, and solute concentrations (mainly nutrients), whereas similar GAMs using only effluent N content (δ15Nwater) as a predictor explained c. 60% of phototroph deviance. Prior to BNR, phytoplankton levels (mainly chlorophytes) increased with urn:x-wiley:00465070:media:fwb13833:fwb13833-math-0001-rich effluent, whereas their abundance declined with δ15N after BNR (diatoms, chlorophytes). 5. Overall, declines in total effluent release of N (67%–97%) but not P (c. 0%) due to BNR resulted in a 52 ± 7% decline in phytoplankton abundance relative to upstream values, despite high inter-annual variation in discharge and baseline chlorophyll a concentration. 6. Nitrogen removal by BNR improved water quality in N-limited ecosystems.Item Open Access Impacts of a century of land-use change on the eutrophication of large, shallow, prairie Lake Manitoba in relation to adjacent Lake Winnipeg (Manitoba, Canada)(John Wiley & Sons Ltd., 2023-11-08) Gushulak, Cale A. C.; Mezzini, Stefano; Moir, Katherine E. M; Simpson, Gavin L.; Bunting, Lynda; Wissel, Björn; Engstrom, Daniel R.; Laird, Kathleen R.; Amand, Ann St.; Cumming, Brian F.; Leavitt, Peter R.1. Evaluation of large lake response to centennial changes in land use and climate can be complicated by high spatial and hydrological complexity within their catchments, particularly in regions of low relief. Furthermore, large lakes can exhibit abrupt changes in structure and function that obscure causes of eutrophication. 2. We provide the first quantification of historical trends in lake production, cyanobacterial abundance, sediment geochemistry and diatom composition since c. 1800 in Lake Manitoba, the 29th largest lake in the world, and compared them to Lake Winnipeg, a morphologically similar, adjacent basin with a 10-fold larger catchment and an abrupt increase in production around 1990. 3. Before 1900, Lake Manitoba was mesotrophic, with low sedimentary concentrations of carbon, phosphorus, nitrogen, cyanobacteria and algal pigments, as well as assemblages of low-light-adapted benthic diatoms. Analysis of pigment time-series with hierarchical generalised additive models revealed that Lake Manitoba eutrophied during 1900–1930 as a consequence of the development of intensive agriculture within its local catchment, but thereafter exhibited stable cyanobacterial densities with limited expansion of N2-fixing cyanobacteria despite persistent eutrophication. 4. Lake Manitoba did not undergo an abrupt change as seen in Lake Winnipeg. 5. These findings suggest that catchment size had little influence on water quality degradation and that nutrient influx from proximal agricultural sources was sufficient to initially degrade these large prairie lakes. The abrupt change in Lake Winnipeg around 1990 required additional intensification of local land use that did not occur in the Lake Manitoba catchment.Item Open Access Paleolimnological assessment of nutrient enrichment on diatom assemblages in a priori defined nitrogen- and phosphorus-limited lakes downwind of the Athabasca Oil Sands, Canada(PAGEpress, 2017-04-14) Laird, Kathleen R.; Das, Biplob; Hesjedal, Brittany; Leavitt, Peter R.; Mushet, Graham R.; Scott, Kenneth A.; Simpson, Gavin L.; Wissel, Bjorn; Wolfe, Jared; Cumming, Brian F.As the industrial footprint of the Athabasca Oil Sands Region (AOSR) continues to expand, concern about the potential impacts of pollutants on the surrounding terrestrial and aquatic ecosystems need to be assessed. An emerging issue is whether recent increases in lake production downwind of the development can be linked to AOSR activities, and/or whether changing climatic conditions are influencing lake nutrient status. To decipher the importance of pollutants, particularly atmospheric deposition of reactive nitrogen (Nr), and the effects of climate change as potential sources of increasing lake production, lakes from both within and outside of the nitrogen deposition zone were analyzed for historical changes in diatom assemblages. Lake sediment cores were collected from a priori defined nitrogen (N) - and phosphorus (P) - limited lakes within and outside the N plume associated with the AOSR. Diatom assemblages were quantified at sub-decadal resolution since ca. 1890 to compare conditions prior to oil sands expansion and regional climate warming, to the more recent conditions in each group of lakes (Reference and Impacted, N- and P-limited lakes). Analyses of changes in assemblage similarity and species turnover indicates that changes in diatom assemblages were minimal both within and across all lake groups. Small changes in percent composition of planktonic taxa, particularly small centric taxa (Discostella and Cyclotella species) and pennate taxa, such as Asterionella formosa and Fragilaria crotonensis, occurred in some of the lakes. While these changes were consistent with potential climate effects on algal growth, water column stability and other factors; the timing and direction of biotic changes were variable among sites suggesting that any apparent response to climate was lake dependent. The absence of a consistent pattern of diatom changes associated with receipt of reactive nitrogen or intrinsic nutrient-limitation status of the lake suggest that downwind AOSR emissions had no demonstrable effect on diatom composition.Item Open Access Regulation of carbon dioxide and methane in small agricultural reservoirs: optimizing potential for greenhouse gas uptake(Copernicus Publications, 2019-11-08) Webb, Jackie R.; Leavitt, Peter R.; Simpson, Gavin L.; Baulch, Helen M.; Haig, Heather A.; Hodder, Kyle R.; Finlay, KerriSmall farm reservoirs are abundant in many agricultural regions across the globe and have the potential to be large contributing sources of carbon dioxide (CO2) and methane (CH4) to agricultural landscapes. Compared to natural ponds, these artificial waterbodies remain overlooked in both agricultural greenhouse gas (GHG) inventories and inland water global carbon (C) budgets. Improved understanding of the environmental controls of C emissions from farm reservoirs is required to address and manage their potential importance in agricultural GHG budgets. Here, we conducted a regional-scale survey (∼ 235 000 km2) to measure CO2 and CH4 surface concentrations and diffusive fluxes across 101 small farm reservoirs in Canada's largest agricultural area. A combination of abiotic, biotic, hydromorphologic, and landscape variables were modelled using generalized additive models (GAMs) to identify regulatory mechanisms. We found that CO2 concentration was estimated by a combination of internal metabolism and groundwater-derived alkalinity (66.5 % deviance explained), while multiple lines of evidence support a positive association between eutrophication and CH4 production (74.1 % deviance explained). Fluxes ranged from −21 to 466 and 0.14 to 92 mmol m−2 d−1 for CO2 and CH4, respectively, with CH4 contributing an average of 74 % of CO2-equivalent (CO2-e) emissions based on a 100-year radiative forcing. Approximately 8 % of farm reservoirs were found to be net CO2-e sinks. From our models, we show that the GHG impact of farm reservoirs can be greatly minimized with overall improvements in water quality and consideration to position and hydrology within the landscape.Item Open Access Seasonal variability of CO 2, CH 4 , and N2 O content and fluxes in small agricultural reservoirs of the northern Great Plains.(Frontiers Media, 2022-10-03) Jensen, Sydney A.; Webb, Jackie R.; Simpson, Gavin L.; Baulch, Helen M.; Leavitt, Peter R.Inland waters are important global sources, and occasional sinks, of CO 2 , CH 4, and N 2 O to the atmosphere, but relatively little is known about the contribution of GHGs of constructed waterbodies, particularly small sites in agricultural regions that receive large amounts of nutrients (carbon, nitrogen, phosphorus). Here, we quantify the magnitude and controls of diffusive CO 2 , CH4 , and N 2 O fluxes from 20 agricultural reservoirs on seasonal and diel timescales. All gases exhibited consistent seasonal trends, with CO 2 concentrations highest in spring and fall and lowest in mid-summer, CH 4 highest in mid-summer, and N 2 O elevated in spring following ice-off. No discernible diel trends were observed for GHG content. Analyses of GHG covariance with potential regulatory factors were conducted using generalized additive models (GAMs) that revealed CO 2 concentrations were affected primarily by factors related to benthic respiration, including dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), dissolved organic carbon (DOC), stratification strength, and water source (as δ18 O water ). In contrast, variation in CH 4 content was correlated positively with factors that favoured methanogenesis, and so varied inversely with DO, soluble reactive phosphorus (SRP), and conductivity (a proxy for sulfate content), and positively with DIN, DOC, and temperature. Finally, N 2 O concentrations were driven mainly by variation in reservoir mixing (as buoyancy frequency), and were correlated positively with DO, SRP, and DIN levels and negatively with pH and stratification strength. Estimates of mean CO 2 -eq flux during the open-water period ranged from 5,520 mmol m−2 year 1 (using GAM- predictions) to 10,445 mmol m−2 year−1 (using interpolations of seasonal data) reflecting how extreme values were extrapolated, with true annual flux rates likely falling between these two estimates.Item Open Access Spatial and temporal variation in nitrogen fixation and its importance to phytoplankton in phosphorus-rich lakes(Wiley, 2018-11-27) Hayes, Nicole M.; Patoine, Alain; Haig, Heather A.; Simpson, Gavin L.; Swarbrick, Vanessa J.; Wiik, Emma; Leavitt, Peter R.1. Limnological theory posits that phosphorus (P) limits primary production in freshwater lakes, in part because fixation of atmospheric nitrogen (N2) can compensate for limitations in nitrogen (N) supply to phytoplankton. However, quantitative estimates of the degree to which N2 fixation satisfies planktonic N demand are rare. 2. Here we used biweekly sampling during summer in seven lakes over 2 decades to estimate both planktonic N2 fixation and phytoplankton N demand. We further assessed the ability of biologically fixed N to satisfy N needs of primary producers in productive hardwater lakes. 3. Phytoplankton N requirements, derived from estimates of phytoplankton productivity and N content, were moderately synchronous (S = 0.41) among lakes (ca. 0.1–9.2 mg N m–3 hr–1). In contrast, rates of N2 fixation determined using isotopic natural abundance method (NAM; 0.002–3.2 mg N m–3 hr–1), or heterocyte-based calculations (0.10–1.78 mg N m–3 hr–1), varied asynchronously (SNAM = –0.03 and SHeterocyte = –0.11) among basins, accounted for a median of 3.5% (mean 11.3% ± 21.6) of phytoplankton demand, and were correlated to the abundance of Nostocales cyanobacteria when analysed using generalised additive models. 4. Overall, the total mass of fixed N accounted for a median of only 3.0% of the spring standing stock of total dissolved N in study lakes (mean 7.5 ± 12.1%), with higher relative importance of fixed N in highly productive downstream lakes. Thus, while fixed N helps sustain primary productivity, particularly in years with high rates of N2-fixation, it does not appear to eliminate N limitation of phytoplankton growth in these P-rich hardwater lakes.Item Open Access Unexpected shift from phytoplankton to periphyton in eutrophic streams due to wastewater influx(Wiley, 2021-05-08) Bergbusch, Nathanael T.; Hayes, Nicole M.; Simpson, Gavin L.; Leavitt, Peter R.Pollution with nitrogen (N) and phosphorous (P) impairs streams by favoring suspended algae and cyano- bacteria over diatom-rich periphyton. Recently, wastewater treatment plants have been upgraded to biological nutrient removal to eliminate both P and N (mainly NH4+), although little is known of the effects of this effluent on flowing waters. Here, we used high performance liquid chromatography to quantify how the abundance and composition of phytoplankton and periphyton varied in response to both influx of effluent produced by biologi- cal nutrient removal and physico-chemical conditions in small, turbid, P-rich streams of the northern Great Plains. At the catchment scale, analysis with generalized additive models (GAMs) explained 40.5–62.6% of devi- ance in total phototroph abundance (as Chl a) and 72.5–82.5% of deviance in community composition (as biomarker carotenoids) in both planktonic and benthic habitats when date- and site-specific physico-chemical parameters were used as predictors. In contrast, GAMs using wastewater input (as aqueous δ15 N) as a predictor explained up to 50% of deviance in Chl a, and ~60% of deviance in community composition, in both suspended (51.6% of Chl a, 67.1% of composition) and attached communities (21.5% of Chl a, 58.8% of composition). Phy- toplankton was replaced by periphyton within a 60-km wastewater-impacted reach due to dilution of streams by transparent effluent and addition of urban NO3 , although predominance of phytoplankton was re-established after confluence with higher-order streams. Overall, influx of effluent shifted turbid, phytoplankton-rich streams to clear ecosystems with abundant epilithon by improving water transparency and providing NO3 to favor benthic diatoms and chlorophytes.Item Open Access Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink(National Academy of Sciences, 2019-05-14) Webb, Jackie R.; Hayes, Nicole M.; Simpson, Gavin L.; Leavitt, Peter R.; Baulch, Helen M.; Finlay, KerriNitrogen pollution and global eutrophication are predicted to increase nitrous oxide (N2O) emissions from freshwater ecosystems. Surface waters within agricultural landscapes experience the full impact of these pressures and can contribute substantially to total landscape N2O emissions. However, N2O measurements to date have focused on flowing waters. Small artificial waterbodies remain greatly understudied in the context of agricultural N2O emissions. This study provides a regional analysis of N2O measurements in small (<0.01 km2) artificial reservoirs, of which an estimated 16 million exist globally. We show that 67% of reservoirs were N2O sinks (−12 to −2 μmol N2O⋅m−2⋅d−1) in Canada’s largest agricultural area, despite their highly eutrophic status [99 ± 289 µg⋅L−1 chlorophyll-a (Chl-a)]. Generalized additive models indicated that in situ N2O concentrations were strongly and nonlinearly related to stratification strength and dissolved inorganic nitrogen content, with the lowest N2O levels under conditions of strong water column stability and high algal biomass. Predicted fluxes from previously published models based on lakes, reservoirs, and agricultural waters overestimated measured fluxes on average by 7- to 33-fold, challenging the widely held view that eutrophic N-enriched waters are sources of N2O.