Repository logo
Communities & Collections
All of oURspace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Spiga, Pablo"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An Erdős-Ko-Rado theorem for finite \(2\)-transitive groups
    (European Journal of Combinatorics, 2016) Meagher, Karen; Spiga, Pablo; Tiep, Pham Huu
    We prove an analogue of the classical Erdős-Ko-Rado theorem for intersecting sets of permutations in finite \(2\)-transitive groups. Given a finite group \(G\) acting faithfully and \(2\)-transitively on the set \(\Omega\), we show that an intersecting set of maximal size in \(G\) has cardinality \(|G|/|\Omega|\). This generalises and gives a unifying proof of some similar recent results in the literature.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An Erdős-Ko-Rado theorem for the derangement graph of \(PGL_3(q)\) acting on the projective plane
    (SIAM J. Discrete Math. 28, 2014) Meagher, Karen; Spiga, Pablo
    In this paper we prove an Erdős-Ko-Rado-type theorem for intersecting sets of permutations. We show that an intersecting set of maximal size in the projective general linear group \(PGL_3(q)\), in its natural action on the points of the projective line, is either a coset of the stabilizer of a point or a coset of the stabilizer of a line. This gives the first evidence to the veracity of Conjecture~\(2\) from K.~Meagher, P.~Spiga, An Erdős-Ko-Rado theorem for the derangement graph of \(\mathrm{PGL}(2,q)\) acting on the projective line, \( \textit{J. Comb. Theory Series A} \textbf{118} \) (2011), 532--544.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An Erdos-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective plane
    (SIAM Journal on Discrete Mathematics, 2014) Meagher, Karen; Spiga, Pablo
    Let G = PGL(2, q) be the projective general linear group acting on the projec- tive line P_q. A subset S of G is intersecting if for any pair of permutations \pi and \sigma in S, there is a projective point p in P_q such that \pi(p)= \sigma(p). We prove that if S is intersecting, then |S| <= q(q-1). Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of P_q. Keywords: derangement graph, independent sets, Erdos-Ko-Rado

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie Settings
  • Privacy Policy
  • oURspace Policy
  • oURspace License
  • Send Feedback