Repository logo
Communities & Collections
All of oURspace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yu, Bo"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A convergence result for matrix Riccati differential equations associated with M-matrices
    (2014-04-22) Guo, Chun-Hua; Yu, Bo
    The initial value problem for a matrix Riccati differential equation associated with an $M$-matrix is known to have a global solution $X(t)$ on $[0, \infty)$ when $X(0)$ takes values from a suitable set of nonnegative matrices. It is also known, except for the critical case, that as $t$ goes to infinity $X(t)$ converges to the minimal nonnegative solution of the corresponding algebraic Riccati equation. In this paper we present a new approach for proving the convergence, which is based on the doubling procedure and is also valid for the critical case. The approach also provides a way for solving the initial value problem and a new doubling algorithm for computing the minimal nonnegative solution of the algebraic Riccati equation.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie Settings
  • Privacy Policy
  • oURspace Policy
  • oURspace License
  • Send Feedback