Mark Brigham
Permanent URI for this collectionhttps://hdl.handle.net/10294/8900
Professor
Office: LB 242
E-mail: Mark.Brigham@uregina.ca
Phone: 306-585-4255 or 306-585-4562
Fax: 306-337-2410
Office: LB 242
E-mail: Mark.Brigham@uregina.ca
Phone: 306-585-4255 or 306-585-4562
Fax: 306-337-2410
Browse
Browsing Mark Brigham by Subject "Physiology · Water loss · Hibernation ·Water loss · Hibernation ·"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Hung out to dry? Intraspecific variation in water loss in a hibernating bat(Springer, 2017) Klug-Baerwald, Brandon J.; Brigham, R. Mark.Hibernation is a period of water deficit for some small mammals, and humidity strongly influences hibernation patterns. Dry conditions reduce length of torpor bouts, stimulate arousals, and decrease overwinter survival. To mitigate these effects, many small mammals hibernate in near saturated (100% RH) conditions. However, big brown bats (Eptesicus fuscus) hibernate in a wider variety of conditions and tolerate lower humidity than most other bats. To assess arid tolerance in this species, we compared torpid metabolic rates (TMR) and rates of total evaporative water loss (TEWL) between two populations of E. fuscus with differing winter ecologies: one that hibernates in humid karst caves and one that hibernates in relatively dry rock crevices. We used flow-through respirometry to measure TMR and TEWL of bats in humid and dry conditions. Torpid metabolic rates did not differ between populations or with humidity treatments. Rates of TEWL were similar between populations in humid conditions, but higher for cave-hibernating bats than crevice-hibernating bats in dry conditions. Our results suggest that E. fuscus hibernating in arid environments have mechanisms to decrease evaporative water loss that are not evident at more humid sites. Drought tolerance may facilitate the sedentary nature of the species, allowing them to tolerate more variable microclimates during hibernation and thus increasing the availability of overwintering habitat. The ability to survive arid conditions may also lessen the susceptibility of E. fuscus to diseases that affect water balance.