Mathematics & Statistics Faculty
Permanent URI for this communityhttps://hdl.handle.net/10294/4260
Browse
Browsing Mathematics & Statistics Faculty by Subject "coverings"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access On the relationship between zero forcing number and certain graph coverings(2014) Alinaghipour, Fatemeh; Fallat, Shaun; Meagher, KarenThe zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block- cycle graph the zero forcing number equals the path cover number. We also give a purely graph theoretical proof that the positive zero forcing number of any outerplanar graphs equals the tree cover number of the graph. These ideas are then extended to the setting of k-trees, where the relationship between the positive zero forcing number and the tree cover number becomes more complex.