A survey of semisimple algebras in algebraic combinatorics
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This is a survey of semisimple algebras of current interest in algebraic combinatorics, with a focus on questions which we feel will be new and interesting to experts in group algebras, integral representation theory, and computational algebra. The algebras arise primarily in two families: coherent algebras and subconstituent(aka. Terwilliger) algebras. Coherent algebras are subalgebras of full matrix algebras having a basis of 01-matrices satisfying the conditions that it be transpose-closed, sum to the all 1’s matrix, and contain a subset