Effects of a global pandemic on the collection and disposal of municipal solid waste
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The COVID-19 pandemic and the subsequent lockdowns had significant effects on solid waste management, which has received greater research focus during this time due to the infectious nature of the SARS-CoV-2 virus. As such, in the first part of the study, SARIMA models were developed to predict residential waste collection rates (RWCR) across four North American jurisdictions before and during the pandemic. Unlike waste disposal rates, RWCR is relatively less sensitive to the changes in COVID-19 regulatory policies and administrative measures, making RWCR more appropriate for crossjurisdictional comparisons. It is hypothesized that the use of RWCR in forecasting models will help us to better understand the residential waste generation behaviors in North America. Both SARIMA models performed satisfactorily in predicting Regina's RWCR. The SARIMA DCV model's performance is noticeably better during COVID-19, with a 15.7% lower RMSE than that of the benchmark model (SARIMA BCV). The skewness of overprediction ratios was noticeably different between jurisdictions, and modeling errors were generally lower in less populated cities. Conflicting behavioral changes might have altered the residential waste generation characteristics and recycling behaviors differently across the jurisdictions. Overall, SARIMA DCV performed better in the Canadian jurisdiction than in U.S. jurisdictions, likely due to the model's bias on a less variable input dataset. The use of RWCR in forecasting models helps us to better understand the residential waste generation behaviors in North America and better prepare us for a future global pandemic. The second part of the study aims to identify the effects of continued COVID-19 transmission on waste management trends in a Canadian capital city, using pandemic periods defined from epidemiology and the WHO guidelines. Trends are detected using both regression and Mann-Kendall tests. The proposed analytical method is jurisdictionally comparable and does not rely on administrative measures. A reduction of 190.30 tonnes/week in average residential waste collection is observed in the Group II period. COVID-19 infection negatively correlated with residential waste generation. Data variability in average collection rates during the Group II period increased (SD=228.73 tonnes/week). A slightly lower COVID-19 induced Waste Disposal Variability (CWDV) of 0.63 was observed in the Group II period. Increasing residential waste collection trends during Group II are observed from both regression (b = +1.6) and the MK test (z = +5.0). Both trend analyses reveal a decreasing CWDV trend during the Group I period, indicating higher diversion activities. Decreasing CWDV trends are also observed during the Group II period, probably due to the implementation of new waste programs. The use of pandemic periods derived from epidemiology helps us to better understand the effect of COVID-19 on waste generation and disposal behaviors, allowing us to better compare results in regions with different socio-economic affluences. The results of both studies will assist policy makers in developing data-driven solid waste management policies during a global pandemic.