An Erdos-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective plane

dc.contributor.authorMeagher, Karen
dc.contributor.authorSpiga, Pablo
dc.date.accessioned2018-04-13T05:03:42Z
dc.date.available2018-04-13T05:03:42Z
dc.date.issued2014
dc.description.abstractLet G = PGL(2, q) be the projective general linear group acting on the projec- tive line P_q. A subset S of G is intersecting if for any pair of permutations \pi and \sigma in S, there is a projective point p in P_q such that \pi(p)= \sigma(p). We prove that if S is intersecting, then |S| <= q(q-1). Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of P_q. Keywords: derangement graph, independent sets, Erdos-Ko-Radoen_US
dc.description.authorstatusFacultyen_US
dc.description.peerreviewyesen_US
dc.description.sponsorshipResearch supported in part by an NSERC Discovery Research Grant, Application No.: RGPIN-341214-2013en_US
dc.identifier.citationSIAM Journal on Discrete Mathematics 28(2) 918--941, 2014.en_US
dc.identifier.urihttps://hdl.handle.net/10294/8286
dc.language.isoenen_US
dc.publisherSIAM Journal on Discrete Mathematicsen_US
dc.subjectderangement graph, independent sets, Erdos-Ko-Rado theoremen_US
dc.titleAn Erdos-Ko-Rado theorem for the derangement graph of PGL(2,q) acting on the projective planeen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
revisedfinal.pdf
Size:
224.48 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.24 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections