“New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use

dc.contributor.authorEwing, Holly A.
dc.contributor.authorWeathers, Kathleen C.
dc.contributor.authorCottingham, Kathryn L.
dc.contributor.authorLeavitt, Peter R.
dc.contributor.authorGreer, Meredith L.
dc.contributor.authorCarey, Cayelan C.
dc.contributor.authorSteele, Bethel G.
dc.contributor.authorFiorillo, Alyeska U.
dc.contributor.authorSowles, John P.
dc.date.accessioned2023-04-28T18:06:03Z
dc.date.available2023-04-28T18:06:03Z
dc.date.issued2020-06-17
dc.description©2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.description.abstractRecent cyanobacterial blooms in otherwise unproductive lakes may be warning signs of impending eutrophication in lakes important for recreation and drinking water, but little is known of their historical precedence or mechanisms of regulation. Here, we examined long-term sedimentary records of both general and taxon-specific trophic proxies from seven lakes of varying productivity in the northeastern United States to investigate their relationship to historical in-lake, watershed, and climatic drivers of trophic status. Analysis of fossil pigments (carotenoids and chlorophylls) revealed variable patterns of past primary production across lakes over two centuries despite broadly similar changes in regional climate and land use. Sediment abundance of the cyanobacterium Gloeotrichia, a large, toxic, nitrogen-fixing taxon common in recent blooms in this region, revealed that this was not a new taxon in the phytoplankton communities but rather had been present for centuries. Histories of Gloeotrichia abundance differed strikingly across lakes and were not consistently associated with most other sediment proxies of trophic status. Changes in ice cover most often coincided with changes in fossil pigments, and changes in watershed land use were often related to changes in Gloeotrichia abundance, although no single climatic or land-use factor was associated with proxy changes across all seven lakes. The degree to which changes in lake sediment records co-occurred with changes in the timing of ice-out or agricultural land use was negatively correlated with the ratio of watershed area to lake area. Thus, both climate and land management appeared to play key roles in regulation of primary production in these lakes, although the manner in which these factors influenced lakes was mediated by catchment morphometry. Improved understanding of the past interactions between climate change, land use, landscape setting, and water quality underscores the complexity of mechanisms regulating lake and cyanobacterial production and highlights the necessity of considering these interactions—rather than searching for a singular mechanism—when evaluating the causes of ongoing changes in low-nutrient lakes.en_US
dc.description.authorstatusFacultyen_US
dc.description.peerreviewyesen_US
dc.description.sponsorshipWe appreciate financial support from the U.S. National Science Foundation, including DEB-0749022 to K. L. Cottingham, K. C. Weathers, and H. A. Ewing; EF-0842267 to K. L. Cottingham; EF-0842112 to H. A. Ewing; EF-0842125 to K. C. Weathers. Our work has also been supported by Bates, the Cary Institute, Dartmouth, Auburn Water District/Lewiston Water Division, and the Lake Sunapee Protective Association. Partial support for pigment and stable isotope analyses and P. R. Leavitt was funded by Natural Science and Engineering Research Council of Canada, Canada Foundation for Innovation, Canada Research Chair Program, the Province of Saskatchewan, Canada, Queen’s University Belfast, and University of Regina.en_US
dc.identifier.citationEwing, H. A., Weathers, K. C., Cottingham, K. L., Leavitt, P. R., Greer, M. L., Carey, C. C., Steele, B. G., Fiorillo, A. U., and Sowles, J. P.. 2020. “New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere 11( 6):e03170. 10.1002/ecs2.3170en_US
dc.identifier.doihttps://doi.org/10.1002/ecs2.3170
dc.identifier.urihttps://hdl.handle.net/10294/15897
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.title“New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land useen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ecosphere - 2020 - Ewing - New cyanobacterial blooms are not new two centuries of lake production are related to ice-2.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
Description:
Published version (PDF)
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections