Optimizing Drill Bit Selection using Artificial Neural Networks

dc.contributor.authorLertnimoolchai, Yanee
dc.contributor.authorOgunrinde, Kanyin
dc.date.accessioned2011-04-05T20:30:01Z
dc.date.available2011-04-05T20:30:01Z
dc.date.issued2011-04-02
dc.description.abstractThe proper bit can increase the rate of penetration (ROP) and reduce overall drilling costs. Conventional analytical optimization methods alone are not sufficient due to the complexity and non linearity of the factors affecting ROP. Artificial Neural Networks (ANNs), capable of handling complex relationships, are used to predict bit performance. A model created using ANNs allows for the selection of the optimal bit for any given pre-specified set of data.en_US
dc.description.authorstatusStudenten_US
dc.description.peerreviewyesen_US
dc.identifier.urihttps://hdl.handle.net/10294/3236
dc.language.isoenen_US
dc.publisherFaen_US
dc.relation.ispartofseriesPSE 2en_US
dc.titleOptimizing Drill Bit Selection using Artificial Neural Networksen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
abstract-only.txt
Size:
106 B
Format:
Plain Text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.33 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections