An Erdős-Ko-Rado theorem for the derangement graph of \(PGL_3(q)\) acting on the projective plane

dc.contributor.authorMeagher, Karen
dc.contributor.authorSpiga, Pablo
dc.date.accessioned2018-04-18T02:14:18Z
dc.date.available2018-04-18T02:14:18Z
dc.date.issued2014
dc.description.abstractIn this paper we prove an Erdős-Ko-Rado-type theorem for intersecting sets of permutations. We show that an intersecting set of maximal size in the projective general linear group \(PGL_3(q)\), in its natural action on the points of the projective line, is either a coset of the stabilizer of a point or a coset of the stabilizer of a line. This gives the first evidence to the veracity of Conjecture~\(2\) from K.~Meagher, P.~Spiga, An Erdős-Ko-Rado theorem for the derangement graph of \(\mathrm{PGL}(2,q)\) acting on the projective line, \( \textit{J. Comb. Theory Series A} \textbf{118} \) (2011), 532--544.en_US
dc.description.authorstatusFacultyen_US
dc.description.peerreviewyesen_US
dc.identifier.issn0895-4801
dc.identifier.urihttps://hdl.handle.net/10294/8289
dc.language.isoenen_US
dc.publisherSIAM J. Discrete Math. 28en_US
dc.subjectderangement graph, independent sets, Erd\H{o}s-Ko-Rado theorem}en_US
dc.titleAn Erdős-Ko-Rado theorem for the derangement graph of \(PGL_3(q)\) acting on the projective planeen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PGL32014_03_29.pdf
Size:
275.8 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections