Repository logo
Communities & Collections
All of oURspace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Noster, Janina"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction
    (American Society for Microbiology, 2019-12-11) Noster, Janina; Hansmeier, Nicole; Persicke, Marcus; Chao, Tzu-Chiao; Kurre, Rainer; Popp, Jasmin; Liss, Viktoria; Reuter, Tatjana; Hensel, Michael
    The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S. Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S. Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S. Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S. Typhimurium and cellular functions and virulence.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of Salmonella enterica serovar Typhimurium
    (Frontiers Media, 2019-04-24) Noster, Janina; Persicke, Marcus; Chao, Tzu-Chiao; Krone, Lena; Heppner, Bianca; Hensel, Michael; Hansmeier, Nicole
    Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron–sulfur (Fe–S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe–S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (ΔsodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. ΔsodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (ΔacnAB). Furthermore, we determined a decreased expression of acnA in STM ΔsodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM ΔacnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense
    (Public Library of Science, 2019-04-22) Noster, Janina; Chao, Tzu-Chiao; Sander, Nathalie; Schulte, Marc; Reuter, Tatjana; Hansmeier, Nicole; Hensel, Michael
    Intracellular Salmonella enterica serovar Typhimurium (STM) deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) for the massive remodeling of the endosomal system for host cells. This activity results in formation of an extensive interconnected tubular network of Salmonella-induced filaments (SIFs) connected to the Salmonella-containing vacuole (SCV). Such network is absent in cells infected with SPI2-T3SS-deficient mutant strains such as ΔssaV. A tubular network with reduced dimensions is formed if SPI2-T3SS effector protein SseF is absent. Previous single cell live microscopy-based analyses revealed that intracellular proliferation of STM is directly correlated to the ability to transform the host cell endosomal system into a complex tubular network. This network may also abrogate host defense mechanisms such as delivery of antimicrobial effectors to the SCV. To test the role of SIFs in STM patho-metabolism, we performed quantitative comparative proteomics of STM recovered from infected murine macrophages. We infected RAW264.7 cells with STM wild type (WT), ΔsseF or ΔssaV strains, recovered bacteria 12 h after infection and determined proteome compositions. Increased numbers of proteins characteristic for nutritional starvation were detected in STM ΔsseF and ΔssaV compared to WT. In addition, STM ΔssaV, but not ΔsseF showed signatures of increased exposure to stress by antimicrobial defenses, in particular reactive oxygen species, of the host cells. The proteomics analyses presented here support and extend the role of SIFs for the intracellular lifestyle of STM. We conclude that efficient manipulation of the host cell endosomal system by effector proteins of the SPI2-T3SS contributes to nutrition, as well as to resistance against antimicrobial host defense mechanisms.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie Settings
  • Privacy Policy
  • oURspace Policy
  • oURspace License
  • Send Feedback