Faculty of Science
Permanent URI for this communityhttps://hdl.handle.net/10294/147
The Faculty of Science represents one of the strongest academic areas at the University of Regina. It attracts more than half of all external research funding and holds two Canada Research Chairs. With the need for scientific and technical skills in the 21st century, students will find that the strengths of the Faculty make it an attractive one in which to further their education.
The Faculty is composed of six departments:
For more information on the Faculty of Science and its programs, please visit the web site at www.uregina.ca/science/
Browse
Browsing Faculty of Science by Title
Now showing 1 - 20 of 148
- Results Per Page
- Sort Options
Item Open Access Abrupt changes in the physical and biological structure of endorheic upland lakes due to 8-m lake-level variation during the 20 th century(Wiley, 2022-03-07) Bjorndahl, Judith A.; Gushulak, Cale A.C.; Mezzini, Stefano; Simpson, Gavin L.; Haig, Heather A.; Leavitt, Peter R; Finlay, KerriClimate-induced variation in lake level can affect physicochemical properties of endorheic lakes, but its consequences for phototrophic production and regime shifts are not well understood. Here, we quantified changes in the abundance and community composition of phototrophs in Kenosee and White Bear lakes, two endorheic basins in the parkland Moose Mountain uplands of southeastern Saskatchewan, Canada, which have experienced > 8 m declines in water level since ~ 1900. We hypothesized that lower water levels and warmer temperatures should manifest as increased abundance of phytoplankton, particularly cyanobacteria, and possibly trigger a regime shift to turbid conditions due to evaporative concentration of nutrients and solutes. High-resolution analysis of sedimentary pigments revealed an increase in total phototrophic abundance (as β-carotene) concurrent with lake-level decline beginning ~ 1930, but demonstrated little directional change in cyanobacteria. Instead, significant increases in obligately anaerobic purple sulfur bacteria (as okenone) occurred in both lakes during ~ 1930–1950, coeval with alterations to light environments and declines in lake level. The presence of okenone suggests that climate-induced increases in solute concentrations may have favored the formation of novel bacterial habitats where photic and anoxic zones overlapped. Generalized additive models showed that establishment of this unique habitat was likely preceded by increased temporal variance of sulfur bacteria, but not phytoplankton or cyanobacteria, suggesting that this abrupt change to physical lake structure was unique to deep-water environments. Such climate-induced shifts may become more frequent in the region due to hydrological stress on lake levels due to warming temperatures across the Northern Great Plains.Item Open Access AFM-based correlative microscopy illuminates human pathogens(Frontiers Media, 2021-05-07) Bhat, Supriya V.; Price, Jared D. W.; Dahms, Tanya E. S.Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host- pathogen interactions.Item Open Access Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient Rhizobium leguminosarum(Multidisciplinary Digital Publishing Institute, 2020-09-16) Jun, Dong; Idem, Ubong; Dahms, Tanya E. S.1) Background: Many factors can impact bacterial mechanical properties, which play an important role in survival and adaptation. This study characterizes the ultrastructural phenotype, elastic and viscoelastic properties of Rhizobium leguminosarum bv. viciae 3841 and the C-terminal protease A (ctpA) null mutant strain predicted to have a compromised cell envelope; (2) Methods: To probe the cell envelope, we used transmission electron microscopy (TEM), high performance liquid chromatography (HPLC), mass spectrometry (MS), atomic force microscopy (AFM) force spectroscopy, and time-dependent AFM creep deformation; (3) Results: TEM images show a compromised and often detached outer membrane for the ctpA mutant. Muropeptide characterization by HPLC and MS showed an increase in peptidoglycan dimeric peptide (GlcNAc-MurNAc-Ala-Glu-meso-DAP-Ala-meso-DAP-Glu-Ala-MurNAc-GlcNAc) for the ctpA mutant, indicative of increased crosslinking. The ctpA mutant had significantly larger spring constants than wild type under all hydrated conditions, attributable to more highly crosslinked peptidoglycan. Time-dependent AFM creep deformation for both the wild type and ctpA mutant was indicative of a viscoelastic cell envelope, with best fit to the four-element Burgers model and generating values for viscoelastic parameters k1, k2, η1, and η2; (4) Conclusions: The viscoelastic response of the ctpA mutant is consistent with both its compromised outer membrane (TEM) and fortified peptidoglycan layer (HPLC/MS).Item Open Access An Approach of Adjusting the Switch Probability based on Dimension Size: A Case Study for Performance Improvement of the Flower Pollination Algorithm(arXiv, 2022-08-20) Aziz, Tahsin; Muhammad, Tashreef; Chowdhury, Md Rashedul Karim; Alam, Mohammad ShafiulNumerous meta-heuristic algorithms have been influenced by nature. Over the past couple of decades, their quantity has been significantly escalating. The majority of these algorithms attempt to emulate natural biological and physical phenomena. This research concentrates on the Flower Pollination algorithm, which is one of several bio-inspired algorithms. The original approach was suggested for pollen grain exploration and exploitation in confined space using a specific global pollination and local pollination strategy. As a “swarm intelligence" meta-heuristic algorithm, its strength lies in locating the vicinity of the optimum solution rather than identifying the minimum. A modification to the original method is detailed in this work. This research found that by changing the specific value of “switch probability" with dynamic values of different dimension sizes and functions, the outcome was mainly improved over the original flower pollination method.Item Open Access Analysis of palaeontological samples from the Cretaceous and Paleogene periods using computed tomography(Faculty of Science, University of Regina, 2020-04-06) Mitchell, JeritComputed Tomography is one of the contemporary, non-invasive tools used by Palaeontologists for studying various fossils. In particular, a technique known as Prop-agation Phase-Contrast Synchrotron Radiation Micro-tomography can be applied to high density bone samples, which produces fine structure differentiation with high resolution in three-dimensional renderings. A detailed description of this method is discussed, for two experiments at the Canadian Light Source. Four samples from the Cretaceous period are looked at, including a salamander, a coprolite, and hip and rib bones from a Tyrannosaurus rex. The rib bone features evidence for possible preserved vascular structures. Also, four insect samples from the Paleogene period were analysed in a micro-tomography experiment at McGill University. One of the insects, a beetle of family Chelonariidae, displays evidence of being an undiscovered species.Item Open Access Anthropogenic eutrophication of shallow lakes: Is it occasional?(Elsevier, 2022-08-01) Zhou, Jian; Leavitt, Peter R.; Zhang, Yibo; Qin, BoqiangUnderstanding and managing the susceptibility of lakes to anthropogenic eutrophication has been a primary goal of limnological research for decades. To achieve United Nations’ Sustainable Development Goals, scientists have attempted to understand why shallow lakes appear to be prone to eutrophication and resistant to restoration. A rich data base of 1151 lakes (each ≥ 0.5 km2 located within the Europe and the United States of America offers a rare opportunity to explore potential answers. Analysis of sites showed that lake depth integrated socio-ecological systems and reflected potential susceptibility to anthropogenic stressors, as well as lake productivity. In this study, lakes distributed in agricultural plain and densely populated lowland areas were generally shallow and subjected to intense human activities with high external nutrient inputs. In contrast, deep lakes frequently occurred in upland regions, dominated by natural landscapes with little anthropogenic nutrient input. Lake depth appeared to not only reflect external nutrient load to the lake, but also acted as an amplifier that increased shallow lake susceptibility to anthropogenic disturbance. Our findings suggest that shallow lakes are more susceptible to human forcing and their eutrophication may be not an occasional occurrence, and that societal expectations, policy goals, and management plans should reflect this observation.Item Open Access Approximation and Visualization of Sets Defined by Iterated Function Systems(University of Regina, 1991-03) Hepting, Daryl H.An iterated function system (IFS) is defined to be a set of contractive affine transformations. When iterated, these transformations define a closed set, called the attractor of an IFS, which has fractal characteristics. Fractals of any sort are currently a topic of great popular appeal, largely due to the exciting images to which they lend themselves. Iterated function systems represent one of the newest sources of fractal images. Research to date has focused on exploiting IFS techniques for the generation of fractals and for use in modelling applications. Both areas of this research are well suited to computer graphics, and this thesis examine the IFS techniques from a computer graphics perspective. As a source of fractals, iterated function systems have some relationship to other methods of fractal generation. In particular, the relationship between IFS attractors and Julia sets will be examined throughout the thesis. Many insights can be gained from the previous work done by Peitgen, Richter and Saupe [32, 33] both in terms of methods for the generation of the fractal sets and methods for their visualization. The differences between the linear transformations which compose an IFS and the quadratic polynomials which define Julia sets are significant, but not moreso than their similarities. This thesis deals with the related questions of approximation and visualization. The method of constructing the approximating set of points is dependent upon the visualization method in use. Methods have been developed both to visualize the attractor and its complement. The two techniques used to examine the complement set are based on the distance and escape-time functions. The modelling power of standard IFS techniques is limited in that they cannot be used to model any object which is not strictly self-affine. To combat this, methods for controlling transformation application are examined which allow objects without strict self-affinity to be modelled. As part of this research, an extensible software system was developed to allow experimentation with the various concepts discussed. A description of that system is included in Chapter 6.Item Open Access Back to Nature: Combating Candida albicans Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils(Multidisciplinary Digital Publishing Institute, 2021-01-15) El-Baz, Ahmed M.; Mosbah, Rasha A.; Goda, Reham M.; Mansour, Basem; Sultana, Taranum; Dahms, Tanya E. S.; El-Ganiny, Amira M.Candida albicans is the causative agent of fatal systemic candidiasis. Due to limitations of antifungals, new drugs are needed. The anti-virulence effect of plant essential oils (EOs) was evaluated against clinical C. albicans isolates including cinnamon, clove, jasmine and rosemary oils. Biofilm, phospholipase and hemolysin were assessed phenotypically. EOs were evaluated for their anti-virulence activity using phenotypic methods as well as scanning electron microscopy (SEM) and atomic force microscopy (AFM). Among the C. albicans isolates, biofilm, phospholipase and hemolysins were detected in 40.4, 86.5 and 78.8% of isolates, respectively. Jasmine oil showed the highest anti-biofilm activity followed by cinnamon, clove and rosemary oils. SEM and AFM analysis showed reduced adherence and roughness in the presence of EOs. For phospholipase, rosemary oil was the most inhibitory, followed by jasmine, cinnamon and clove oils, and for hemolysins, cinnamon had the highest inhibition followed by jasmine, rosemary and clove oils. A molecular docking study revealed major EO constituents as promising inhibitors of the Als3 adhesive protein, with the highest binding for eugenol, followed by 1,8-cineole, 2-phenylthiolane and cinnamaldehyde. In conclusion, EOs have a promising inhibitory impact on Candida biofilm, phospholipase and hemolysin production, hence EOs could be used as potential antifungals that impact virulence factors.Item Open Access Basin-specific records of lake oligotrophication during the middle-to-late Holocene in boreal northeast Ontario, Canada(SAGE Publications, 2021-06-28) Gushulak, Cale AC; Leavitt, Peter R.; Cumming, Brian FDescriptions of regional climate expression require data from multiple lakes, yet little is known of how variation in records within morphometrically complex lakes may affect interpretations. In northeast Ontario (Canada), this issue was addressed using records of pollen, pigments, and diatoms in three sediment cores from two small boreal lakes spanning the last ~6000 years. Pollen analysis suggested warm conditions between ~6000 and ~4000 cal yr BP, coherent with previous assessments from boreal eastern Ontario and western Quebec. Analysis of phototrophic communities from fossil pigments and diatom valves suggested relatively eutrophic conditions with lower lake-levels during this interval. Generalized additive model trends identified significant regional changes in pollen assemblages and declines in pigment concentrations after ~4000 cal yr BP consistent with cooler and wetter climate conditions that resulted in regional lake oligotrophication and increased lake levels during the late-Holocene. Despite contemporaneous changes in pollen and pigment biomarkers across lakes, cores collected from adjacent basins of the same lake (Green Lake) did not show similar trends in fossil pigments likely reflecting preferential deposition of clay-rich allochthonous material in the deeper central basin and suggesting that regional signals in climate may be complicated by lake- or basin-specific catchment processes.Item Open Access Beppu Bay, Japan, as a candidate Global boundary Stratotype Section and Point for an Anthropocene series(SAGE Publications, 2022-12-19) Kuwae, Michinobu; Finney, Bruce P; Shi, Zhiyuan; Sakaguchi, Aya; Tsugeki, Narumi; Omori, Takayuki; Agusa, Tetsuro; Suzuki, Yoshiaki; Yokoyama, Yusuke; Hinata, Hirofumi; Hatada, Yoshio; Inoue, Jun; Matsuoka, Kazumi; Shimada, Misaki; Takahara, Hikaru; Takahashi, Shin; Ueno, Daisuke; Amano, Atsuko; Tsutsumi, Jun; Yamamoto, Masanobu; Takemura, Keiji; Yamada, Keitaro; Ikehara, Ken; Haraguchi, Tsuyoshi; Tims, Stephen; Froehlich, Michaela; Keith Fifield, Leslie; Aze, Takahiro; Sasa, Kimikazu; Takahashi, Tsutomu; Matsumura, Masumi; Tani, Yukinori; Leavitt, Peter R; Doi, Hideyuki; Irino, Tomohisa; Moriya, Kazuyoshi; Hayashida, Akira; Hirose, Kotaro; Suzuki, Hidekazu; Saito, YoshikiFor assessment of the potential of the Beppu Bay sediments as a Global boundary Stratotype Section and Point (GSSP) candidate for the Anthropocene, we have integrated datasets of 99 proxies. The datasets for the sequences date back 100 years for most proxy records and 1300 years for several records. The cumulative number of occurrences of the anthropogenic fingerprint reveal unprecedented increases above the base of the 1953 flood layer at 64.6 cm (1953 CE), which coincides with an initial increase in global fallout of 239Pu+240Pu. The onset of the proliferation of anthropogenic fingerprints was followed by diverse human-associated events, including a rapid increase in percent modern 14C in anchovy scales, changes in nitrogen and carbon cycling as recorded by anchovy δ15N and δ13C, elevated pollution of heavy metals, increased depositions of novel materials (spheroidal carbonaceous particles, microplastics, polychlorinated biphenyls), the occurrence of hypoxia (Re/Mo ratio) and eutrophication (biogenic opal, TOC, TN, diatoms, chlorophyll a), unprecedented microplankton community changes (compositions of carotenoids, diatoms, dinoflagellates), abnormally high spring air temperatures as inferred from diatom fossils, and lithological changes. These lines of evidence indicate that the base of the 1953 layer is the best GSSP level candidate in the stratigraphy at this site.Item Open Access Bias in Research Grant Evaluation Has Dire Consequences for Small Universities(Public Library of Science, 2016-06-03) Murray, Dennis L.; Morris, Douglas; Lavoie, Claude; Leavitt, Peter R.; MacIsaac, Hugh; Masson, Michael E. J.; Villard, Marc-AndreFederal funding for basic scientific research is the cornerstone of societal progress, economy, health and well-being. There is a direct relationship between financial investment in science and a nation’s scientific discoveries, making it a priority for governments to distribute public funding appropriately in support of the best science. However, research grant proposal success rate and funding level can be skewed toward certain groups of applicants, and such skew may be driven by systemic bias arising during grant proposal evaluation and scoring. Policies to best redress this problem are not well established. Here, we show that funding success and grant amounts for applications to Canada’s Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program (2011–2014) are consistently lower for applicants from small institutions. This pattern persists across applicant experience levels, is consistent among three criteria used to score grant proposals, and therefore is interpreted as representing systemic bias targeting applicants from small institutions. When current funding success rates are projected forward, forecasts reveal that future science funding at small schools in Canada will decline precipitously in the next decade, if skews are left uncorrected. We show that a recently-adopted pilot program to bolster success by lowering standards for select applicants from small institutions will not erase funding skew, nor will several other post-evaluation corrective measures. Rather, to support objective and robust review of grant applications, it is necessary for research councils to address evaluation skew directly, by adopting procedures such as blind review of research proposals and bibliometric assessment of performance. Such measures will be important in restoring confidence in the objectivity and fairness of science funding decisions. Likewise, small institutions can improve their research success by more strongly supporting productive researchers and developing competitive graduate programming opportunities.Item Open Access Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction(American Society for Microbiology, 2019-12-11) Noster, Janina; Hansmeier, Nicole; Persicke, Marcus; Chao, Tzu-Chiao; Kurre, Rainer; Popp, Jasmin; Liss, Viktoria; Reuter, Tatjana; Hensel, MichaelThe tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S. Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S. Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S. Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S. Typhimurium and cellular functions and virulence.Item Open Access Bottom-Up Forces Drive Increases in the Abundance of Large Daphnids in Four Small Lakes Stocked with Rainbow Trout (Oncorhynchus mykiss), Interior British Columbia, Canada(Springer, 2019-09-23) Mushet, Graham R.; Laird, Kathleen R.; Leavitt, Peter R.; Maricle, Stephen; Klassen, Andrew; Cumming, Brian F.The introduction of salmonids into lakes of western North America for sport fishing is a widespread phenomenon. While numerous investigations have documented cascading trophic interactions upon the introduction of fish into naturally fishless systems, little research has been done to investigate the importance of natural fish status (fishless vs. fish bearing) in modulating historical food web response to dual forcing by bottom-up (resource regulation from nutrients) and top-down (planktivory from stocked fish) processes. We used the paleolimnological record to reconstruct food web changes in four lakes in interior British Columbia that have been stocked with rainbow trout since the early to mid-1900s. Analysis of pigments, diatoms, and Cladocera was undertaken in cores from all lakes. We predicted that if fish were important in structuring cladoceran abundance and composition, we would document a decline in the abundance of large daphnids post-stocking in our two naturally fishless lakes, and little change in the two fish-bearing lakes. Instead, we documented increased abundance of large daphnids after stocking in all lakes in the early to mid-1900s, a finding inconsistent with size-selective predation from planktivorous fish. Further, our data suggest that deep, low-oxygen refugia may be important in sustaining populations of large Daphnia, a process which was enhanced by increased nutrients and lake production according to sub-fossil diatom and pigment analyses. This study shows that fish stocking does not invariably result in a decrease in large-bodied Cladocera and that nutrients and lake type can modulate the response of invertebrate planktivores.Item Open Access Breathing space: deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages(Springer, 2021-04-30) Dickey, James W. E.; Coughlan, Neil E.; Dick, Jaimie T. A.; Médoc, Vincent; McCard, Monica; Leavitt, Peter R.; Lacroix, Gérard; Fiorini, Sarah; Millot, Alexis; Cuthbert, Ross N.The influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.Item Open Access C.V.(2014-01-21) Meagher, KarenItem Open Access Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral.(American Society for Microbiology, 2022-11-17) Shahina, Zinnat; Ndlovu, Easter; Persaud, Omkaar; Sultana, Taranum; Dahms, Tanya E. S.Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation.Item Open Access Changes in coupled carbon‒nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming(Nature Research, 2020-10-28) Anderson, N. John; Engstrom, Daniel R.; Leavitt, Peter R.; Flood, Sarah M.; Heathcote, Adam J.Arctic ecosystems are changing in response to recent rapid warming, but the synergistic effects of other environmental drivers, such as moisture and atmospheric nitrogen (N) deposition, are difficult to discern due to limited monitoring records. Here we use geo- chemical analyses of 210 Pb-dated lake-sediment cores from the North Slope of Alaska to show that changes in landscape nutrient dynamics started over 130 years ago. Lake carbon burial doubled between 1880 and the late-1990s, while current rates (~10 g C m−2 yr−1) represent about half the CO2 emission rate for tundra lakes. Lake C burial reflects increased aquatic production, stimulated initially by nutrients from terrestrial ecosystems due to late- 19 th century moisture-driven changes in soil microbial processes and, more recently, by atmospheric reactive N deposition. These results highlight the integrated response of Arctic carbon cycling to global environmental stressors and the degree to which C–N linkages were altered prior to post-1950 regional warming.Item Open Access Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans(BMC, 2018-02-09) Shahina, Zinnat; El‑Ganiny, Amira M.; Minion, Jessica; Whiteway, Malcolm; Sultana, Taranum; Dahms, Tanya E. S.Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored.Item Open Access Cinnamon leaf and clove essential oils are potent inhibitors of Candida albicans virulence traits.(MDPI, 2022-10-08) Shahina, Zinnat; Molaeitabari, Ali; Sultana, Taranum; Dahms, Tanya Elizabeth SusanPlant-based essential oils are promising anti-virulence agents against the multidrug-resistant opportunistic pathogen Candida albicans. Gas chromatography–mass spectrometry of Cinnamomum zeylanicum (cinnamon) leaf and Eugenia caryophyllus (clove) flower bud essential oils revealed eugenol (73 and 75%, respectively) as their major component, with β-caryophyllene, eugenyl acetate, and α-humulene as common minor components. Cinnamon leaf and clove essential oils had minimum inhibitory concentrations of 600 and 500 µg/mL, respectively against the C. albicans RSY150 reference strain and 1000 and 750 µg/mL, respectively for the clinical reference strain ATCC 10231. The combined oils are additive (FICI = 0.72 ± 0.16) and synergistic (0.5 ± 0.0) against RSY150 and the clinical reference strain, respectively. Mycelial growth was inhibited by sublethal concentrations of either essential oil, which abolished colony growth. At half of the lowest combined lethal concentration for the two oils, the yeast-to-hyphal transition and mycelial growth was potently inhibited. Mutant strains als1Δ/Δ, als3Δ/Δ, hwp1Δ/HWP1+, and efg1Δ/Δ were sensitive to either or both oils, especially efg1Δ/Δ. In conclusion, oils of cinnamon leaf and clove and their combination significantly impact C. albicans virulence by inhibiting hyphal and mycelial growth.Item Open Access Climate change drives widespread shifts in lake thermal habitat(Nature Publishing Group, 2021-06-03) Kraemer, Benjamin M.; Leavitt, Peter R.ake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on aver- age when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap com- pared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity.